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A new numerical method that guarantees exact mass conservation is proposed to
solve multidimensional hyperbolic equations in semi-Lagrangian form. The method
is based on the constrained interpolation profile (CIP) scheme and keeps the many
good characteristics of the original CIP scheme. The CIP strategy is applied to
the integral form of variables. Although the advection and nonadvection terms are
separately treated, mass conservation is kept in the form of a spatial profile inside
a grid cell. Therefore, it retains various advantages of the semi-Lagrangian solution
with exact conservation, which has been beyond the capability of conventional semi-
Lagrangian schemes. @ 2001 Eisevier Science
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1. INTRODUCTION

In recent years, with the computing environment being improved, a demand for hi
precision, stable numerical methods is rapidly increasing in various fields of technolo
The constrained interpolation profile (CIP) scheme, developed by Yabe and co-wor}
[1-4], for solving hyperbolic equations, also known as the cubic interpolated pseudoy
ticle/propagation scheme, has attracted a great deal of attention [5]. The CIP scheme
low-diffusion and stable scheme and can solve hyperbolic equations with third-order ac
racy in space [6]. This scheme has been successfully applied to various complex fluid 1
problems, covering both compressible and incompressible flows, such aslaser-induced ¢
oration, shock-wave generation, elastic-plastic flow, bubble collapse, and milk crown (
review see [7-9]). Furthermore the CIP scheme is essentially written as the semi-Lagran
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formulation. Therefore, it can be used for high Courant—Friedrichs—Lewy (CFL) conditio
in explicit form and is stable for multiphase flow calculations.

Recently, a great deal of attention has been paid to semi-Lagrangian schemes and :
excellent numerical schemes have been developed. These semi-Lagrangian schemes
been widely incorporated into numerical models for atmospheric flow (see Ref. [10] 1
one of the pioneering works). A review that serveys the semi-Lagrangian schemes to ¢
is found in Ref. [11]. The semi-Lagrangian scheme is based on a Lagrangian invari
solution and the solution gives the time development of the value only at the spatial poil
Therefore, the semi-Lagrangian schemes are naturally associated with non-conserv
numerical formulations. In order to overcome the lack of conservation, many numeris
approaches have been studied: schemes based on a higher order Hermite interpolation
13], finite-volume approaches [14], and flux-form semi-Lagrangian schemes [15] ba:
on the piecewise parabolic method [16]. Many applications require exact conservat
of mass. For example, when we treat black-hole formation and plasma dynamics, sr
fractions of mass and charge generate a gravity wave and a large electric field, respecti
and therefore, the exact conservation of mass is necessary to the success of the num
analysis. Therefore the development of the conservative semi-Lagrangian scheme sh
still be worthy further effort.

It is frequently demonstrated that the CIP method shows good conservation of m:
although the method is written in a nonconservative form. In a special case such as
solution of the Vlasov equation, it is possible to cast and improve the CIP method to exa
conserve mass [17]. However, it is not easy to apply this numerical technique to the solu
of general hyperbolic equations. Therefore, the development of a conservative CIP met
is earnestly desired. In such situations, authors have recently succeeded in developing
conservative semi-Lagrangian schemes called CIP—CSL4 [18] and CIP-CSL2 [19]. T
schemes are based on the concept of the CIP scheme and preserve the excellent nun
features of the CIP scheme. In order to include these various families of schemes,
here extend the name CIP to mean constrained interpolation profile and CSL to m
conservative semi-Lagrangian scheme. CSL4 and CSL2 use fourth-order and quad
polynomials, respectively. The schemes are written as semi-Lagrangian formulations
provide stable solutions under large CFL with exact mass conservation. In previous pé
[18, 19], the scheme was applied to many problems in linear and nonlinear one-dimensi
hyperbolic equations.

In this paper, we shall extend the CIP-CSL2 scheme to multi-dimensional equatic
and show some solutions by the schemes in two and three dimensions. The extensic
CIP-CSL4 to multi-dimensions is found in Ref. [20]. In the following section, we presel
a brief introduction of the one-dimensional CIP and CIP—-CSL2 schemes. Furthermore,
propose a rational CIP-CSL2 (R—CIP-CSL2) scheme, which has additional excellent
merical features such as monotone preserving and nonoscillatory features. In Section 3
numerical procedure for the two-dimensional scheme is detailed and some examples o
lutions in two dimensions are presented. Then, we describe the numerical procedure fo
three-dimensional scheme and show some numerical solutions. Furthermore, becaus
fractional step technique is employed to extend the scheme to multi-dimensions altho
the scheme is essentially written in the semi-Lagrangian form, we try to apply the pres
multi-dimensional scheme to a semi-Lagrangian solution and examine the range of c
putational time intervals with which the scheme can provide reasonable numerical rest
Finally, in Section 4, we summarize this paper briefly.
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2. REVIEW OF CIP AND CIP-CSL2 METHODS

2.1. CIP Method

Although nature is continuous, digitization is unavoidable for implementation in ni
merical simulations. The primary goal of the numerical algorithm will be to retrieve tt
lost information inside the grid cell between these digitized points. Most of the numeri
schemes proposed before, however, did not take care of real solutions inside the grid
and resolution has been limited to the grid size. The CIP method proposed by one of
authors tries to construct a solution inside the grid cell close enough to this real solutiot
the given equation with some constraints. We here explain its strategy by using an advec
equation,

of of
ot + u& =0. Q)
When the velocity is constant, the solution of Eq. (1) gives a simple translational moti
of field f with a velocityu. The initial profile (solid line of Fig. 1a) moves like a dashed
line in a continuous representation. At this time, the solution at grid points is denoted
circles and is the same as the exact solution. However, if we eliminate the dashed line :
Fig. 1b, then the information of the profile inside the grid cell has been lost and it is harc
imagine the original profile and it is natural to imagine a profile like that shown by the sol
line in Fig. 1c. Thus, numerical diffusion arises when we construct the profile by the line
interpolation even with the exact solution at grid points as shown in Fig. 1c. This proces
called the first-order upwind scheme. On the other hand, if we use a quadratic polynor
for interpolation, it suffers from overshooting. This process is the Lax—Wendroff scher
or Leith scheme.
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FIG. 1. The principle of the CIP method. (a) The solid line is the initial profile and the dashed line is
exact solution after advection, whose solution (b) is at discretized points. (c) When (b) is linearly interpolat
numerical diffusion appears. (d) In the CIP, the spatial derivative also propagates and the profile inside a gric
is retrieved.
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What made this solution worse? It is because we neglected the behavior of the solu
inside the grid celland merely followed the smoothness of the solution. From this experier
we understand that a method incorporating the real solution into the profile within a g
cell is quite an important subject. We propose to approximate the profile as shown bel
Let us differentiate Eq. (1) with spatial variabtethen we get

09, 9 _ v

= —— 2
ot X axg’ 2)

whereg = df/dx stands for the spatial derivative df. In the simplest case, where the
velocity u is constant, Eq. (2) coincides with Eq. (1) and represents the propagation c
spatial derivative with a velocity. By this equation, we can trace the time evolutionfof
andg on the basis of Eq. (1). b could be predicted to propagate as shown by the arrows |
Fig. 1d, it is easy to imagine that by this constraint, the solution would become much clo
to the initial profile that is the real solution. Most importantly, the solution thus created giv
a profile consistent with Eg. (1) even inside the grid cell. The importance of this consister
has been demonstrated previously [9, 19].

If both the values off andg are given at two grid points, the profile between these point
can be interpolated by a cubic polynomial [3],

F'o0 =a X3+ X2+ g'X + N, (3)
a = 9" + gip N 2(f" = filp)
NG AXE
b — 3( firL1Jp - fin) N 29in + ginup (4)
' AX? AX

AXi = Xjup — Xi,
iup =i — sgnu;),
X =(X—=X),

where sgnf) stands for the sign ofi. Thus, the profile at thén + 1)th step is read-
ily obtained by shifting the profile by; At, so that fi”+1 = F"(xi — ujAt) and gi“+1 =
dF"(x; — u; At)/dx; then

M = &g+ b2+ g'E + N,

o't =3at? + 2big + g (5)

where we defing; = —u; At.

2.2 CIP-CSL2 Scheme

In this section, we shall describe a method to solve the one-dimensional conserva
equation

af  awf)
- =0, 6
ot T ax ©

whereu is a variable now. The CIP scheme given in the previous section uses the va
f and its first-order spatial derivativig f = 9f/dx at the computational grid points as
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constraints for constructing a profile inside the grid cell. The CIP-CSL2 [19] and CSI
[18] schemes require an additional constraint of the value integrated over neighboring
grid points,

o= [ fexdx 7)

wheren indicates the time. Although the CIP method uses the time evolutioh afid

g = daf /dx as constraints to define a cubic polynomial, it would be interesting to find a wi
to apply the CIP to the integrated valuefoinstead of tof itself. The motivation to employ
this analogy stems from the following advection equation,

oD oD
— +u— =0. 8
ot + 0X ®)

Interestingly, if we take a spatial derivative of Eq. (8) and defie= 9 D/dx, we obtain
a conservative-type equation,

oD’ n o(uD)
at aX

— 0. 9)

Recalling that Eq. (9) is the same as Eg. (6), we come to the idea of B8irgf in
Eqg. (9) andD = [ f dx in Eq. (8). This procedure is exactly the same as that in Eq. (1
simply replacingf by [ f dx, together with Eq. (2), in whicly is replaced byf . Thus the
CIP procedure can be used for a pairfof dx and f instead off andaf/ax.

By this analogy, we shall introduce a function

D{‘(x):/ fx,t)dx. (10)

D{'(x) represents the accumulated mass frgnto the upstream poirt. We shall use a
cubic polynomial to approximate this profile,

DM(x) = ¢ X3 + i X2+ £X, (11)

whereX = x — x;. The role of spatial gradierg in the CIP method is now played by,
which is the spatial gradient @ in this scheme. By using the above relation, a profile o
f (x, 1) betweerx; andx;,; is then obtained by taking the derivative of Eq. (11):

80700

R0 = 0X

= 3¢ X2+ 2 X + . (12)
From the definition oD in Eq. (10), it is clear that

D'(x) =0, D'(Xi+1) = p". (13)
Sinced D/adx gives a functional valuéd, it is also clear that

9D _ (n

aX ' N

ax i+1°

(14)
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FIG. 2. The remapping procedure gives the time evolutiop oThe region A can be found by tracing the
trajectory.

Therefore, the coefficients andn; are determined to satisfy the constraints of Egs. (13
and (14). As a result of the above simultaneous equations, the coefficients are determ
explicitly without any matrix solution as

b i 200

i 15

' AX? AX3 (19)
2"+, | 300

o ser 16

g AX; AX? (16)

whereAx = Xi+1 — X;. It is interesting to observe by comparing Egs. (15) and (16) witl
Eqg. (4) that the role off, g in Eq. (4) is played byD, f, respectively, remembering that
D'(xi) — D{'(Xi+1) = —p{" from Eq. (13).

The time development gf is determined from the volume formed by two upstream
departure points as shown in Fig. 2 and can be calculated from the classical conserv:
form of the conservation equation [14]

Xit1 Xpit1
pi”+1=/f(x,t+At)dX: / fx, dx (17)
Xi Xp;

wherexp, is the particle position of the upstream departure point, calculated by

t

Xp = Xi +/ udt. (18)
t+At

This time integration is performed along the particle trajectory. Since the profile of tl

physical valuef has already been interpolated by Egs. (12), (15), and (16), the integrati

(17) can be estimated as

X +1 Kis1—1 Xm+1 Xpi 41
oL — / Froodx+ Y /FQ(X)dX+ / R (x) dx, (19)
Xpi m=k-+1 ;(m Xk 41

wherek; indicates the cell which includes the departure pokgtsand is determined by

Xk, < Xp < Xig+1- (20)
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By using the relati0|fx)i( F'(x)dx = fxf(a D/'(x)/3x) dx = D(x), we can rewrite Eq. (19)
as below and the time developmentwis calculated:

Xp; Kipi—1 Xmsl Xpit1
pi““: /Fk(x)dx+ Z /Frﬂ(x)dx+ / F"(x) dx
X m=k; +1 X X1
kiv1—1
= (DIZH(Xpm) D¢ (Xp)) Z Pm- (21)

In Eq. (21), itis assumed thist,; — 1 > k;. In practice, the last term of the right-hand side
of Eq. (21) vanishes whela 1 = k;.

Since Eq. (21) is written as the differencel®f (xj, ) for the time evolution op, the sum
of Dy (xp) over the entire computational domain will vanish exactly; thus we can get
exact conservation relation betweghand ,oi"+l by taking a summation of (21):

Z pitt = Zp. : (22)

Equation (22) guarantees the conservation defined in terms of the sum of the integrals
grid points) ; pi defined by Eq. (7) instead of a sum over values at grid pointd;.

Next, let us turn to the time evolution of the valde We calculate the valué in the
same way as the original CIP scheme. The conservation Eq. (6) is rewritten as

of of

— = G, 23
at +u X (23)

whereG = — f du/ax. On the basis of the time-splitting algorithm of the CIP scheme [3]
we split the solution of Eq. (23) into two steps:
advection phase

af /ot +udf/ox =0, (24)
non-advection phase
af /ot = G. (25)
After the advection phase is solved, the non-advection phase is calculated on the bas
values resulting from the advection phase.
In the advection phase, we make use of the local analytic solution of Eq. (24), whict
well known as the Lagrangian invariant solution:

f(xi,t+ At) = f(Xp, t). (26)

Since the profile off (x, t) betweenx,, andxy ;1 is given by Eq. (12), the solution of the
advection phasé* is calculated as

fi* = FIZ (Xpi) = 3¢ki <$>2 + ani (é) + fkri]v (27)



178 NAKAMURA ET AL.

where(£) is the distance between these two points:

(é) = Xpi - in . (28)

It should be noticed thag) is neither—u; At norftt+AI udt. In Eq. (27) ¢y, n« are given
by simply replacing by k; in Egs. (15) and (16).

After the advection phase is calculated using Eq. (27), the result of the advection ph
f* is advanced to the value of the next time ste€p? in the non-advection phase. The
non-advection phase can be solved by conventional forward, finite difference method &

£ = ¥ + GAt, (29)

whereG = — f*(3u(x;, t)/dx) and the spatial derivative of the velocity/dx is approx-
imated by the simple centered finite difference. It should be noticed that althbugh
calculated separately by Egs. (24) and (25) in non-conservative form, the mass conse
tion is recovered in constructing the spatial profilefoo as to satisfy Eq. (7).

Figure 3a shows the results of the linear propagation of the square wave after 1000 1
steps. We see from Fig. 3, the CIP-CSL2 scheme provides a result quite similar to
original CIP scheme shown in Fig. 3b. As shown previously, this scheme can correc

(a) (b)

X

FIG. 3. Linear wave propagation with (a) the CIP-CSL2, (b) the CIP, and (c) the R—CIP-CSL2 after 10
time steps witluAt/Ax = 0.2.
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calculate the propagation speed of the shock wave for the Burgers equation even wit
numerical viscosity [18, 19].

2.3 Rational CIP-CSL2 (R-CIP-CSL2) Method

Here, in order to show the possibility of extension of the present scheme, we point
that we can use other interpolation functions instead of the cubic polynomial represer
by Eq. (11). For example, we can use a rational interpolation function,

- Y3 X2 '
Dpational(x) = U A X X_ h ¢I X) ’ (30)
(1+api X)

which had been proposed as a rational CIP scheme byéfiab[21]. In the interpolation
function (30),« is a switching parameter. The coefficients ¢;, and g; are temporally
determined so that the interpolation function (30) satisfies the conditions (13) and (14)
settingk; = 0 anda = 1 at first. By keeping only thig;, and theng;, x; and¢; are finally
determined by the conditions (13) and (14) witk= 0. Thereforey; vanishes when = 1
and the interpolation function (30) coincides with the cubic polynomial function (11) whe
o = 0 (for details see [21]):

¢ = f" + o 10p (31)
xi = Sapi + (S — ") /A% — ki AX (32)
Ki = [fin—S+(fi11—S)(l+aﬂiAXi)]/AXi (33)
Bi=1(s - 1"/(fi1-S)[-1]/Ax (34)
§ = ph1/A% (35)

. (36)
0 otherwise

{1fm@—WVML—$20
Even for this interpolation function, the time developmenp @tn be calculated accord-
ing to Eg. (21) and the solution of the advection phaseffig given by

f* — 9 Dfational(Xi +§) _ (Bii E2 + 24 E + i) B

WiE + XiE% + ¢i§)
: ax A+ aBit) '

B ape?

(37)

It had been proved that the profile interpolated by this rational function is monotone [2
Thus, we can construct the CIP-CSL2 scheme, which has excellent numerical feat
such as being monotone preserving and nonoscillatory. We show one typical result by
rational CIP-CSL2 scheme in Fig. 3c.

3. EXTENSION TO TWO DIMENSIONS

3.1. Formulation in Two Dimensions

Inthis and the following sections, we shall extend the one-dimensional CIP-CSL2 sche
to higher dimensions by the fractional step technique. By using the fractional step technic
the one-dimensional scheme can be easily extended to a multi-dimensional scheme ar
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fzj+1 0.1 fi+1j+1
¢ L ¢

O, ,Oij O-yi+1 j+l

fij O-xij fi+1 j

FIG. 4. The variables in the two-dimensional CIP-CSL2 scheme.

can avoid tedious efforts to implement the codes because the solution is performec
reciprocal use of one-dimensional solutions.

First, in order to simplify the discussion in the following, we shall introduce the 1L
algorithm

CIPCSL1OU, P, PN, R, RN, m, A). (38)

An explicit procedure for the algorithr@IPCSL1Dis described in Appendix A. Thus,
the above one-dimensional CIP-CSL2 scheme is give@IRCSL1Ou, f", "1 o
pn—&-l’ i’ X).

In the two-dimensional scheme, as shown in Fig. 4, an integrated valueihin a cell
surrounded by four computational grid poinisj), (i + 1, j), (i, j +1),and(i + 1, j +
1) is introduced,

N Xit1 Yi+1
o= [ [ foxy.naxay (39)
Xi Yi
and the scheme conserves the sump;pexactly during computation.
Let us consider a two-dimensional conservative equation in the Cartesian coordin:
X, Y,

of awuf)  awf)

at X ay

0, (40)

whereu andv correspond to the velocities in tikxe andy-directions, respectively.

For simplicity, in this paper, we assume thats a scalar and describe the implementa-
tion in the Cartesian coordinates. However, it has already been demonstrated that the
scheme can handle non-scalars and be extended to non-Cartesian coordinates sucl
curvilinear coordinate system [22]. As mentioned in the previous section, the present C
CSL2 and R—CIP-CSL2 schemes take over the same concept and numerical procedut
the CIP scheme, and therefore can be easily extended to the solution of non-scalars «
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non-Cartesian coordinate system. The implementation of this scheme in the non-Carte
coordinate and its application to the Navier—Stokes equation are now in progress.

It is well known that a one-dimensional solver is easily extended to a multidimensior
solver by the fractional step technique. In the fractional step technique, the solution of
two-dimensional conservative Eq. (40) is split into two sequential solutions:

Step1 af/dt +a(uf)/ax =0, (41)
Step2 af/at + a(vf)/dy =0. (42)

The solution of the original two-dimensional conservative equation (40) is given by sequ
tial solution of Eqgs. (41) and (42). As easily understood in view of Fig. 4, the solution |
Step 1 is given by

CIPCSL1Qu, ", fo% o0 oSl j x). (43)

We should note that the line density defined by
Xi+1
Xi

plays the same role gsin Eq. (7) in the case of the one-dimensional algorithm in the
previous section, as clearly seen from Fig. 5a. In a similar way, using the li
density

Yj+1
o= foxy.ody, (45)
Yj

the solution of Step 2 is given by
CIPCSL1Du, fef, M o2t 60t jy). (46)

However, we must note thai;j‘ep'- is not yet obtained after Step 1. Therefore we need
method to approximate it. This situation is quite similar to the fractional step solution
the CIP method [2, 17].

Next, we shall discuss how to estimate the evolution,oh Step 1. In deriving an equation
for oy, we assume that the advection velodit, y, t) is uniform from(, j) to (i, j + 1)
along they-direction within one cell and set 0 (x, t) = (u(X, yj, t) + u(x, yj+1,1))/2
fory; <y < yj+1. Thus, the integration of Eq. (41) in thedirection,

i (9t o f)
° dy=0 47
/yj {atJr ox [T “7)

leads to the following advection equation for the governing equations of a function of t
line densityoy;(x, t) = fy{’“ f(x,y, t)dx,

80'yj a(lTjO'yj) _

0. 48
ot X (48)
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FIG.5. Schematic view of the numerical procedure in two dimensions. (a) Time revolutigriogiven by a
remapping procedure. The region A can be found by the tracing the trajectoryxrdihection with the velocity
u(x, y;). The integration along the line A gives the solutiorogf Time evolution off is given by interpolating
the value at a poinB. (b) Time revolution ofp is given by a remapping procedure. The region C can be founc
by the tracing the trajectory in thedirection with the velocityu; (x). The volume within a regiol€ gives the
solution of p and the time evolution af, is given by line density along a linB.

The above advection equation is the same as Eq. (41) except that the Vzdnes are
replaced byy; andu;. This means thaty; is advected in the same mannerfaas clearly
seen from Fig. 5b. Furthermore, we should remember that in the solution of Step 1,
natural extension of the one-dimensional case, the time evolutipi &f calculated using

a classical conservative form,

Xit1 Yj+1 Xpis1j Yj+1
pisjteﬂ.://f(x’y’t_FAt)dydx: / /f(x,y,t)dydx, (49)
X Yj Xpij i

wherex,;j is an upstream departure point fgrand is calculated using the equation

t
Xpij = Xi + / Jj (x, t) dt. (50)

t+At

In the case where the time interval is small enough, we can assume that the velocit)
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is constant in time and the upstream departure poipisare estimated bypij = X —
u(xi, yj+1/2, t)At. Itis well known that when the fractional step technique is used in ea
direction of the two-dimensional advection equations, the accuracy of the trajectory
multi-dimensional space will deteriorate for large CFL numbers. However, there are me
merits to using the fractional steps technique, such as the simple numerical procedure
easy extension to higher dimensions. Furthermore, as will be shown later, the numel
results are reasonably good except where the CFL number is too large.

By using a function of the line densityy;(x,t) = fyf"“ f(x,y,t)dx, Eqg. (49) is
rewritten as

Xit1 Xpit1
ot = /cryj(x,t—i-At)dX: /ayj(x,t)dx. (51)
Xi Xp;

Because this is analogous to Eq. (17) &ytis used instead of , it is obvious that the time
development op can be estimated by applying the one-dimensional CIP-CSL2 scheme
a pair ofp andoy instead ofp and f. Therefore, in order to calcula,tx;‘ftem andpSt®®, we
can directly apply the one-dimensional algorithm

CIPCSL1OU, oy, 05", p", ™%, i, X). (52)
In the same wayrS® is advanced to!*1 in Step 2 by
CIPCSL1O(v, o™, gL, pster oL y), (53)

wherevi (y, t) = (v(%i, Y, t) + v(Xi11, ¥, 1)) /2.

Here, it should be noticed that the conservatiop & guaranteed exactly white is not
conserved likef in one dimension. We summarize explicitly all calculation procedures fc
the two-dimensional scheme in Appendix A.

In the above procedurg,does not seem to be directly connected tout only connected
throughoy andoy, which are temporally introduced. Furthermore, in this two-dimension:
CIP-CSL2, only the one-dimensional profile bfis interpolated. Hence it is not clear
whetherf (X, y, t) thus obtained can really satisfy Eq. (39). Thus, aquestion arises if whett
exact conservation is really attained by this whole procedure, or not. In the following, !
shall prove that the profile of thus obtained is consistent with the integrated value

3.1.1. Proof of Conservation in 2D

In Fig. 6, we illustrate the process of interpolation of the val@g, y, t) inside the grid
cell of x; < x < Xi+1 andy; <y < yj41. First, f at the pointA(x, y;) between X;, y;)
and 41, y;) is interpolated in thex-direction. If we use the quadratic polynomial similar
to Egs. (12), (15), and (16), then we obtain

f(rjA) = 3¢xij X2 + 277><ij X+ firj], (54)
il + fihy 203
2f0 + fn . n.
Nxij = — b R R (56)

AX AX2’



184 NAKAMURA ET AL.
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FIG. 6. The process of construction of the two-dimensional profile within a computational cell.

whereX = x — x; andAX = X1 — X;. Similarly, we can interpolaté at the pointA’(x,
Yi+1) between(x, yj+1) and(Xi+1, Yj+1) as follows:

fay = 3¢xij XZ + 2nyij X + fif 1 (57)
o filir + iy _ 20341 (58)
X AX? AX3
2fir'] + fh 3o
j+1 i+1j+1 xij+1
ij =— . 59
Nxij Ax + Ax2 (59)

Next, the value off (x, y, t) is interpolated betweeA and A’ in the y-direction, and we
have

FI (X Y) = 3y Y2+ 20y Y + ). (60)
fo + Tl 200 An
N C-)) (A) y(AA)
210 + f o Solan
L A (A) Y(AA)
Nyij = — Ay + Ay? (62)

whereY =y —yj, Ay = Yj11—Yj, anda;‘(AA,) is the line density along the lind — A’
and is given by the interpolation ef} in the x-direction:

ayan) = 31 X2 + 20 X + oy, (63)

__ oyij toyiny  20] (64)
X7 Ax2 T Ax®

it = 2 T oy 3y (65)

The above interpolation gives us the two-dimensional profilé efithin a computational
cell and Egs. (54)—(59) correspond to the procedure (43), Eqgs. (60)-(62) to Eq. (46),
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Egs. (63)—(65) to Eqg. (52). If we write down the above two-dimensional interpolation, v
obtain the explicit expression

2 2
Iy =Y CaX'Y™, (66)

1=0 m=0

where the coefficientS),, are given in Appendix B. It is verified easily from Eqgs. (54)—(65)
that the interpolated profile (66) leads to the nine relations

Xi+1 Yi+1
[ [ Frmasay=ii
Xi Yj

Xit1 Xi+1
/ Fi (X, y) dx = oy, / FI (X, ¥j+0) dX = 0y 44
Xi Xi

Yj+1 Yj+1
/ Fi (i, y)dy = oy, / Fi (it ) dy = ofi g, (67)
Yj Yij

Fioa, vy = fifs FjGaes yp) = iy,

Fi? (X, Yj+1) = fiT+1, Fi? Xi+1, Yj+1) = filljﬂ,
and the profileF{f(x, y) is consistent with the definition ofyj;, oy, o}, and fj. In
particular, Eq. (67) proves that the spatial profileFjf(x, y) gives the correct value of
when it is integrated within a cell, thus guaranteeing mass conservation. Furthermore
many applications, the above two-dimensional profilef afithin a computational cell is
quite useful for the calculation of surface tension, for example.

3.1.2. Numerical Solution in Two Dimensions

To demonstrate the accuracy and efficiency of the present method, some numerical
tions in two dimensions will be given in this section.

First, in order to examine the basic numerical features of the two-dimensional CIP—CS
scheme using the fractional step technique, we shall describe solutions in which the 1
interval is small enough, such as CKL1.

We use a rectangular grid with uniform spacing = Ay = 1 and employ 106 100
grid points. The time interval is determined in order to satisfy GF0.4 in all grid points.

At the beginning of the computation, we set the valud &nd then the initial value gf
is calculated byyi; = (fij + fiyej + fij+1 + fizej+10)AXAY/4.

Atfirst, we apply the present method to the two-dimensional solid-body rotation probile
known as Zalesak’s solid-body problem [23]. Figure 7a shows the schematic view of t
test problem. The value of inside the cut-off cylinder is.D, while outside the cylinder
f = 0.0, and the solid-body rotation is defined with velocity component

U= -2y, v=2rX. (68)

The lateral boundary condition was made to be a free-slip boundary. Figures 7b and 7c s
profiles ofp at the initial time and after one complete revolution. In Fig. 7, the line contour ¢
p is plotted fromp = 0.0 to p = 1.2 with increments of . The maximum and minimum

values aref = 41.06 and—9.24 x 102, respectively. The present method restores we
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(b)
A
5 meshes 15 meshes
100 h T
meshes Y
25 meshes 3 meshes
7
100 meshes |
(@) (d)

FIG.7. (a) Schematic view of Zalesak’s solid-body rotation problem. The valdei$ide a cut-out cylinder
is 1.0, while outsidef = 0.0. The velocities are given hy, = —wy andv, = wX, wherew is an angular velocity
andw = 27. Contour plots and three-dimensional views of the profilep dbr Zalesak’s problem: (b) initial
state, (c) the computational result after one complete evolution, and (d) the computational result with the rati
interpolation function.

the shape of the initial profiles and gives a stable, weakly diffusive but nonmonotone res
Furthermore, Fig. 7d shows the result with the R—CIP-CSL2, where itis seen that the mc
tone and nonoscillatory properties are maintained, and the maximum and minimum val
are f = +1.00 and—3.98 x 104, respectively. The conservation errors of total mass o
the CIP-CSL2 and R—CIP-CSL2 schemes are less th210~7 and 151 x 1078,
respectively, until the computation ends. These errors are caused by mass loss a
free boundaries. The root mean square error and the numerical scores are represen
Table I.

As the next example, Fig. 8 shows the propagation of a square wave at an angle of
to the computational grid orientation with the velocity= v = 1.0. A periodic boundary

TABLE |
Results of the Solid-Body Rotation Problem with the CIP-CSL2 Scheme
and R-CIP-CSL2 Scheme: Root Mean Square Error (RMS), Relative
Error of the Total Mass Conservation (mass error), and Minimum (min)
and Maximum (max) Value of f

RMS Mass error Max Min

CSL2 161x 10°° 240x 1073 +1.09 —9.24 x 1072
Rational CSL2 210 x 1073 151x 108 +1.00 -3.98x 10
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FIG. 8. (a) Schematic view of the advection of a square wave to the oblique direction. The véluesifle
the rectangle is 1, while outside= 0. The computational domain is periodicirandy. (b) A profile of p at an
initial time. (c) A profile of p after 1000 time steps with the constant velocity: v = 1.0.

condition is used. The initial condition is

1 (xl 1yl <10

. (69)
0 otherwise

Figures 8b and 8c show the profile pfat the initial step and after 1000 steps, respec
tively. The maximum and minimum values at the end of computatiorf ase+1.10 and

f = —5.34 x 1072, respectively, and the overshoot and undershoot of the profifeisf
suppressed well.
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t=21.21 t=42.43

t=127.28 t=141.42
FIG. 9. Three-dimensional views of the time developmentooih the fluctuating velocity field given by
Eq. (70).p is advected to the oblique direction and compressed and expanded severely by a large fluctuatic

the velocity.
Next, the velocity is changed to a fluctuating oblique velocity field given by

1 1
=v=— : 70
' 21+ 05sin[Z(x+y)] (70)

Figure 9 shows the time development @f In spite of a large velocity fluctuation, the
calculation was stably executed without severe numerical oscillation. Compression and
pansion of the rectangle are correctly calculated. The comparison is made in Fig. 10
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(@) (b) (© (d)

FIG. 10. Overview profile and line contour of att = 98.99 using (a) the CIP-CSL2, (b) the R—-CIP-CSL2,
(c) original CIP scheme using the two-dimensional interpolation procedure called type A, and (d) analytical res
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®) | ©
2 l 2
1 1
0@02 0

FIG. 11. Cross section of the profile of along a linex = y att = 98.99. The dashed line represents the
analytic solution and the solid lines represent the results of (a) present scheme, (b) present scheme using a r:
interpolation function, and (c) original CIP.

the profile of f att = 98.99 calculated by (a) the CIP-CSL2, (b) the R—CIP-CSL2, (c) th
original CIP scheme, and (d) the analytical solution. The line contodrisfplotted from

f =0.0to f = 3.0 with increments of 1. Figure 11 shows the profiles dfon the line

x = y. Although it is well known that the CIP scheme excels in capturing discontinuitie
the present scheme can also model discontinuities as well as the CIP scheme. Further
as seen from the figures, the present scheme using a rational function provides the nonc
latory and monotone profile. Figure 12 shows the relative error of mass conservation.
verified that the present scheme conserves the total mass exactly within the computati
round-off error. The numerical scores of each scheme are presented in Table Il. In Tabl
the negative mass ratio means that the proportion of a volume of the negative mass t
total volume and is calculated By, , o pij / >_ ay ij -

—Present Scheme

10" ~~CIP
w 8
o.v—(
o ®
gi
[ 2
OE
Q
20
=g
0 &
s

10-17 N

0750 100 150 200 250
time

FIG. 12. Time evolution of the relative error of the mass conservation.
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TABLE Il
Results of the Wave Propagation Problem in the Fluctuating Oblique Velocity Field
with the CIP-CSL2 Scheme and R—CIP-CSL2 Scheme aftér= 98.99

Mass error Max Min Negative mass ratio
CsL2 Q09 x 107 +2.46 —8.76 x 1072 2.01x 1072
Rational CSL2 Z0x 1071 +2.00 —7.10x 1072 270x 1072
CIP 306 x 1074 +2.46 -1.04x 101 2.38x 107
Theory — +2.80 0.00 —

Note.The proportion of the volume of the negative mass to the total volume is the negative mass ratio.

As the next example, the velocity field is set to

A S 2 1

corresponding to a uniform convergence of the mass over the entire computational don
into one point. Such a velocity field often appears in the solution of problems that requ
exact conservation of mass, such as in the star formation. The boundary condition
made to be a free-slip boundary. The valuef afithin a cylinder of 40-grid radius located
at the origin is 10, while outside the cylindef = 0.0 att =0. The time development of
o by using the CSL2 scheme is shown in Fig. 13a. While the theoretical minimum val
of f is always 00, the computed minimum value dfatt = 40.0 is f = —0.600, which

Initial t=10.0 t=20.0
| |

(a) (b)

FIG.13. (a) Three-dimensional views of the time development wfthe velocity field given by Eq. (71) with
the CIP-CSL2 scheme. All the mass is finally compressed into the origin and condensed within one computat
cell. (b) Three-dimensional views pfatt = 40.0 with the R—CIP-CSL2 scheme.
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FIG. 14. Time evolution of the relative error of the mass conservation. The dotted and solid curves repres
the results of the present scheme and CIP scheme, respectively.

corresponds to.2 x 10-2% of the maximum value of . As shown in Fig. 13b, however,
this undershooting vanishes when the R—-CIP-CSL2 scheme is used. The mass conv
toward the origin as time proceeds, andt at 40 all the mass is concentrated into the
central cell as predicted theoretically from the initial condition and velocity field. Until th
computation ends aftdr= 40, all the mass is stably retained at the origin. The relativ
error of the mass conservation is shown in Fig. 14 as a function of time. The origi
CIP scheme loses the mass for the most part around the origin where the direction o
velocity changes, while the CIP-CSL2 scheme conserves the total mass very well until
computation ends.

As a final example, we apply the scheme to idealized kinematic frontogenesis in r
teorology [24] in order to demonstrate that the scheme provides good results even if
velocity is strongly fluctuating and more complex. The details of the problem are giv
by Doswell [25] and the analytical solution is known. In the problem, a circular vortex
assumed and the velocity is given by

Uy = —vTrX (72)
vy = vTr5 (73)
v (r) = seck(r) tanhr) /vo, (74)

wherer = /x2 + y? andvrg is a constant which is determined so that maximum value ¢
vT is equal to unity. The initial condition of is distributed in they-direction and given

by
f = —tanh(y/2). (75)

As with other computational conditions such as the mesh condition or width of the dome
except the time intervakt, the same conditions as those of R@r{24] are employed. We
use acomputationaldomai= {(X,y)| —4 < x < 4, —4 < y < 4} and employ 60< 60
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4 T (a)TRUE 4 T (b)CIP-CSL2

FIG. 15. Numerical results of the non-semi-Lagrangian solution of Doswell’s frontogenesis experiment wi
the CIP—-CSL2 scheme and the R—CIP-CSL2 scheinedt6. Courantnumber CFE 0.4 is used. (a) Theoretical
solution, (b) results with CIP-CSL2, and (c) results with R—-CIP-CSL2.

grid points. The computations are executed with the €@F0L4. The line contour of the
numerical result of the CIP-CSL2 scheme and the analytical result are shown in Figs.
and 15a, respectively. Furthermore, Fig. 15¢c shows the numerical result of R—CIP—-CSL:
each panel of Fig. 15, the line contour is plotted frére= —0.8 to f = 0.8 at increments
of 0.2. In comparison with the theoretical solution presented in Fig. 15a, the numeri
result agrees very well with the theoretical one. This is much more evident in Fig. ]
which shows three-dimensional views of the profile fofatt = 16. As shown in these
figures, the scheme can stably calculate the fine structure around the origin. Espec
the R—CIP-CSL2 scheme provides the monotone profile iof addition to the accuracy.
The scores of the numerical results are given in Table Ill; RMS indicates the root me
square. Edisp, Ediss, and Etotal are dispersion error, dissipation error, and the summati
Edisp and Ediss, respectively. Each error is estimated in the same way as that describ
Ref. [24].
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TABLE 11l
Results of Doswell's Frontogenesis Problem at= 16 with CFL = 0.40
(Non-Semi-Lagrangian Solution) Dissipation (Ediss), Dispersion (Edisp), and
Total (Etotal) Errors

RMS Edisp Ediss Etotal

CSL2 792 x 1072 6.49x 10°° 6.54 x 10 6.56 x 1072
Rational CSL2 BO x 102 8.79x 1073 127 x 104 8.92x 1073

0.75

¢ 0.00
-0.75
4 Y
(b)CIP-CSL

0.75
0.00
-0.75 1
4

(¢)R-CIP-CSL

FIG. 16. Three-dimensional views of the numerical results of Doswell's frontogenesis experiment with t
CIP-CSL2 scheme and the R—CIP-CSL2 scheme-al6. (a) Theoretical solution, (b) results with CIP-CSL2,
and (c) results with R—CIP-CSL2.
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3.2. Extension to Three Dimensions
3.2.1. Formulation in Three Dimensions

Once the two-dimensional scheme is established, it is straightforward to extend it to tt
dimensions. As a natural extension of the two-dimensional version, an integrated valu
f within a cell surrounded by eight computational grid poitts y;, z), (Xi+1, Y. Z),

Xis Y41 Z0)s Kis ¥ Zer1)s Kigds Vit1s 20y (X0, Yitts Zer1)s Xiets Vjs Zksr), and (X1,
Yi+1 Zkt1),

Zit1 Yi+1 Xig1
p{}k:///f(x,y,z,t)dxdydz (76)

Ze Yo X

is introduced anozijk pijk is conserved exactly by using the present three-dimension
scheme. We make use of the fractional step technique; thus, the solution of the th
dimensional conservation equation

af /ot + 0 vy f)/0X + d(vy F) /0y + 0 (v, F)/02=0 (77)

is split into three sequential steps:

Stepl af/at +a(uf)/ox =0, (78)
Step2 af/at + d(vf)/dy =0, (79)
Step3 af/at +d(wf)/9z=0. (80)

In the three-dimensional case, the procedure of each step is almost the same as tt
two-dimensional case, and the solution is given simply by repeating the one-dimensic
scheme. For example, in Step 1, the valyieis advected by the one-dimensional CIP-CSL2
algorithm

CIPCSL1Qu, f", fS€1 o oSl i x), (81)

where oy is the line density shown in Fig. 17 and is given by integratihgn the
x-direction

Xi+1
Oxijk :/ f(x,yj, z, t)dx. (82)
X

The line densities in the other directionsy;, = fyf"“ f(xi, Y,z t)dy and og; =
fzzkk“f(xi, Yj,» z,t)dz, are advected by using the surface densiSesstead ofp as in
the two-dimensional solution,

CIPCSLIQU 6y, 0,", S, Sy™. i, X) (83)

CIPCSL1OU", o), 05", S, S i, X), (84)

Z°

whereu’(x, t) = (U(X, Yj, Z. 1) + U(X, ¥j41, Z, 1)) /2, U"(X, 1) = (U(X, yj, Z. t) + u(x,
Vi, Zet1, £))/2, and the surface densiti€gy, S,,, andS;, are defined by

Xi+1 fYj+1
Sg)/iik = / / f(x,y, z., t)ydydx (85)
X yi
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4fjf(
S S_vzijk
zxijk
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Sxyijk
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FIG. 17. A location of the variablefi, the line densitiesy;jx, oyij, 0z, and the surface densiti&yj,
Syzijks Sixijk in the three-dimensional CIP-CSL2 scheme.

Zkt1 fYi+1
ngijk=/ / f(xi,y,zt)ydydz (86)
Zx yi
Xit1 fZk+1
$xijk=/ / f(X,yj,z t)dzdx (87)
Xi Zx

Then, the task left for us is the estimationijZeﬂ, which is needed to advect the line
densities in the Step 2 and Step 3 solutions. Similarly to the advection equation for the
density (48) and with the assumption that the velocity is constang;fer y < y;,1 and
% < Z =< Zyy,

ux,y,zt) = u”(xt)

(U(X, yJ s Zk, t) + U(X, Yj+l, Z, t) + U(X’ yJ s Zk+1, t)
+ U(X, yi+l’ 241, t))/4, (88)

we obtain the following advection equation for the surface density definegj oy, t) =
y’:’“ fzzkk“ f(x,y,z t)ydzdy
S, n ISy _

0. 89
ot X (89)

The above advection equation is the same as Eq. (41) except that the vafuaadi
are replaced by, andu”. This means tha®is advected in the same mannerfas the
one-dimensional solution. Furthermore, we should remembeiptigjust the integrated
value ofS;; in x-direction. Thus, a pair of valueg (S;;) corresponds to a paip( f) in the
one-dimensional solution. Therefore, the one-dimensional CIP-CSL2 solution is app
to the time development of( S;), and the solutionsef'**, S'¢) are given by

CIPCSLIQU", §),. S5, ", p™™. i, x). (90)

By the above procedure, the set of valge¥°™, S, S, Sef, gSte, g ool g2l
s} that are the solution of Step 1 is calculated. We can solve Step 2 and Ste
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similarly, and we summarize explicitly all the calculation procedures in three dimensio
in Appendix A.
The three-dimensional profile df within a computational cell is described by the form

2 2 2
FOGY. 2 =) CanX'Y™Z", (91)

i=0 j=0 k=0

whereZ = z — z, and the 27 coefficients,, are determined so that the interpolated profile
(91) is consistent with the values &f o, S, andp in the same way as in two dimensions.
We summarize all the coefficients of this three-dimensional profile in Appendix B.

3.2.2. Cost of Computation

Itis natural to pose the objection that the CIP—CSL2 uses the integrated values in addi
to the physical value and the schemes seem to be the same as other schemes that use
as many mesh points. We address the following points concerning such an ojection.

(&) Asshown previously[19], otherinterpolation schemes such as the cubic spline use
bic interpolation functions like CIP-CSL2 fail to give the correct result at high wave numb

(b) The cubic spline scheme uses the same cubic polynomial function as given by Eq.
While the cubic spline requires matrix solutions to determine the coefficients of a polynon
in the general cases, the coefficients in the CIP-CSL2 scheme are explicitly calcule
according to Egs. (15) and (16). Therefore, generally in one dimension, the computatic
cost of the CIP-CSL2 scheme for interpolation is expected to be much less than tha
the cubic spline and the calculation costs do not increase even if an additional varie
is introduced. Actually, the CPU time required for a simple advection problem in or
dimension is cubic Lagrange/CH 1.0, spline/CIP= 1.68 (the Thomas method is used
to solve the matrix), CIP-CSL2/CI2 1.20, R—-CIP-CSL2/CIR= 1.60, PPM [16]/CIP=
2.31.

(c) In the present scheme, the solution is given by the reciprocal use of the ol
dimensional scheme and we can reuse the same subroutine to calculate all kinds of
ues in each fractional step. Therefore, the total computational load is proportional to
frequency of calling the subroutine. As shown in Appendix A, the number of require
subroutine calls is proportional to the dimensions and given by2*~, whereu is the
dimension. However, due to the fact mentioned in (a), reducing the grid poingsclayn
give p~*+1 reduction of computational load for a fixed CFL. Therefore, the actual require
computational cost is only proportionalt = L one(a2~1/ %), wherel oneis the com-
putation cost for the calculation in one dimension. The conventional numerical results «
their comparison to the cubic spline scheme suggest that ihéarger than 2 [17, 19].

(d) In addition to (c), in most practical applications, we use variables such as therr
conductivity, viscosity and temporal variables for matrix solution.lLgbe the cost for the
solution of a number of these variables; the required computational cost in.thert .
Since usuallyL ¢ > L+, the required computational cost of the CIP-CSL2 is similar to the
in other schemes even fgr= 1.

Furthermore, we are developing another formulation, which does not use the directic
splitting technique, and more reduction of the computational cost is expected.

3.2.3. Numerical Solution in Three Dimensions

Inorderto evaluate the presentthree-dimensional solver, the problem of three-dimensi
solid-body rotation is calculated. We use a 20000 x 100 rectangular mesh system with
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uniform spacingAx = Ay = Az = 1, and the computational domain{ix, y, z) | —50 <
X < 50,-50 < y < 50,-50 < z < 50}. The velocityv = (u, v, w) is set as

t=wxT, (92)
wheref = (x,y, z) anda = 27/+/2(0, —1, 1). In order to satisfy CFl< 0.2 in all grid

points, the time step interval aft = 4.547 x 10~% is employed. In Fig. 18a a schematic
picture of this problem is shown. Initially, the center of the solid body is located

30 grid

z==16 z=-14

(c)

FIG. 18. (a) Schematic view of the three-dimensional solid-body, rotation problem. (b) Initial profile of th
solid body. At the boundary and the inside,= 1.0; elsewheref = 0.0. (c) Computational result after one
complete rotation. The pictures on the top row show the isosurfage=00.5 of the initial condition and the
computational result. The line contours of the profilepain thez = k plane are shown below.
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(X, Y, 2) = (0, —20, —20), and the detailed profile of the initial state is drawn in Fig. 18b. Al
the boundary and inside the solid body, the valué f set to 10, while f = 0.0 outside.
The initial value ofp is given by pijx = %(fijk + fivajk + fijrw + Ffijkrs + fivgjpmc+

fij 4+t + firrjees + firtj+1) AXAYAZ. Ideally, the profile after one complete evolu-
tion should be the same as the initial one. Figure 18c shows an isosurfaee 06 for the
numerical result and the profiles pfon thez = k plane at = 1.0 within —25 < x < 25
and—45 < y < 5. The line contours are drawn fronl(to 1.2 with increments of (L. The
scheme restores the initial profile well.

3.3. Semi-Lagrangian Solution

In this section, we show a result of the semi-Lagrangian solutions. Although the ClI
CSL scheme is a semi-Lagrangian scheme as well as the CIP and the present two-
three-dimensional numerical procedures are written in the semi-Lagrangian formulati
too, we may lose the accuracy of the trajectory in exchange for the many merits of using
fractional step technique such as the simple numerical procedure and easy extensic
higher dimensions. This is because the trajectory is estimated individually along each
rection in fractional steps. However, it is valuable to examine the efficiency of the sche
with a large time interval.

For an example of a semi-Lagrangian solution, we apply the scheme to the ideali
kinematic frontogenesis that has already been mentioned in the two-dimensional case.
same computational conditions except for time interkélare employed. In the case of
CFL >» 1, the trajectory to the upstream departure points has to be estimated accurately
the computation of the trajectory, we can use well-known and highly precise schemes
ordinary differential equations such as the Runge—Kutta and the iterative method [14].
employed the fourth-order Runge—Kutta scheme to solve Eq. (50) (for details see [26])
order to examine the dependencysn the computations are performed with CEL1.061,
2.121, 4.243. The numerical results bfatt = 16 with CFL=1.061, 2.121, 4.243 are
depicted in Figs. 19b—19d. The scores of the numerical results are given in Table IV.

In comparison with the theoretical solution presented in Fig. 19a, the numerical res
with the large time interval CFE= 4.243 is slightly different from the theoretical solution
and the accuracy is degraded, while the numerical results with-€EI061, 2.121 agree
well with the theoretical one.

Up to now, some excellent semi-Lagrangian schemes have been proposed, such &
piecewise parabolic method proposed by Woodward and co-workers [16] or the piecev
biparabolic scheme (PBM) proposed by Ri&r{24]. Especially, the PBM scheme has been
widely noticed recently as a small numerical diffusion method. The errors of the CI|
CSL2 for CFL= 1.061, 2.121 are almost equal or less than the results of the PBM scher
reported by Racit. Actually, in the solution with CFl= 1.061, dispersion, dissipation,
and total errors are about 7% smaller than for the results of the PBM scheme. On the o
hand, however, the numerical score for CEl4.243 which is presented in Table IV is
worse than the result of PBM scheme (see Table Il in [24]). This degradation of accurz
for a large CFL number is reasonable because we adopt the fractional step techniqt
extend the scheme to multi-dimensions and the trajectory is estimated individually alc
each direction in fractional steps. However, if we take account of the simplicity of tt
procedure of the present scheme, we think that the error of the computational results
remains reasonably small.
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TABLE IV
Result of Semi-Lagrangian Solutions of Doswell’'s Frontogenesis Problem with
CIP-CSL2 Scheme at = 16

CFL RMS Edisp Ediss Etotal CPU
1.061 844 x 1072 7.32x 107 7.61x 10°° 7.40x 1073 2895
2.121 109 x 107! 1.21x 102 9.29x 10°° 1.22x 1072 1460
4.243 144 x 10t 2.10x 1072 1.50x 1074 2.11x 1072 724

Notes.Line of CPU presents the total computation time measured in central processing unit
time on a 333-MHz Pentium Il personal computer.

“4 1 (a) TRUE -4 T (b) CFL=1.061

4 3 -2 -1 0 1 2 3 4 4 3 2 -1 0 1 2 3 4

FIG. 19. Numerical results of the semi-Lagrangian solution of Doswell’s frontogenesis experiment wi
the CIP-CSL2 scheme &t= 16. (a) The theoretical solution and the numerical results with (b) €RAL061,
(c) 2.121, and (d) 4.243 are represented.
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4. SUMMARY

We have extended the CIP-CSL2 scheme to the multi-dimensional conservative equa
The line density or the surface density is introduced on each boundary of a computatic
cell. The cubic polynomial function is used to estimate the mass flow and the advecti
The present scheme successfully solves the two- and three-dimensional problems with e
mass conservation and the numerical diffusion is quite small. Furthermore, the conserva
monotone preserving, and non-oscillatory scheme has been constructed by using the rat
interpolation function instead of the cubic polynomial.

The present scheme has many excellent numerical features and provides highly acct
low diffusive solutions with guaranteeing exact mass conservation. Although the sche
adopts the fractional step technique in the extension to multi-dimensions, it provides r
sonably accurate results even for a semi-Lagrangian solution. When a much larger
number is employed, degradation of the accuracy is unavoidable because of the fracti
step procedure. However, if we take account of the many merits of the fractional step te
nigue, such as the simple numerical procedure and easy extension to higher dimensio
is concluded that the solution by the present scheme is accurate enough even in the ce
semi-Lagrangian solutions.

APPENDIX A

Here we summarize numerical procedures in the CIP-CSL2 method in two and th
dimensions. In order to clarify the solution procedure in the multiple dimensions, we sh
define the 1D algorithm of the present schemedbpCSL1D(U, F, FN, R, RN, m, 1).
The explicit expression of the 1D algorithm of the present scheme is given as follow:

CIPCSL1OU, F, FN, R, RN, m, %)

/* Departure poink/
t
Apm = Am + / U(x, t)dt. (A1)
t+At
/* Grid pointky, satisfyingik, < Ap, < Aky+1 %/

if(Aj < Apy < Aj41) thenky = j (A2)
(Am> = )me - )\km (A3)
Ay = Myt 1 — M- (Ad)

/* Interpolation betweeRy, andiy, 1 */
Rt Pen 2R

= — A5
P ANE ARE (A5)
2F, + F 3
e, = — 200+ Faa | 3R (A6)
Adk, N

/+ Time development oR x/
Din = i (Am)° + iy (Am)? + Fim(Am) (A7)
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kerl_j-
RNn= > Rj+ (Dms1— Dm). (A8)
j=Km
/* Time development oF x/
= 3¢km()\m)2 + 277km<)¥m> + Fm (A9)
A
FNp = (1 — W) x Fx. (A10)

Two-Dimensional Solver

The two-dimensional solution is given only by applying the one-dimensional solutic
repeatedly. In the Step 1 solution, the sets of valdé€s ¢y') and (", oy') are advanced to
(R, ogm) and (7, o,'°") by applying the one-dimensional solution to each set. It
Step 2, each set of values{*", o3'") and (%, o¢") is advanced:

Step 1: uij = (Wj + Uij+1)/2 (A11)
CIPCSL1OW, oy, 05", p", p*°, i, X) (A12)
CIPCSL1Ou, f", fstep‘-, o, o™ i, X). (A13)

Step 2: vij = (vij + vi41j)/2 (A14)
CIPCSL1, o5, o, po®, oML j y) (A15)
CIPCSL1D(, f'°R, M o2t oML j ). (A16)

Three-Dimensional Solver

The three-dimensional solution is given only by applying the one-dimensional soluti
repeatedly as follows.

Step 1: CIPCSL1Ou, f", f5" o 551 i, X) (A17)
Uik = (Uijk + Uij116) /2 (A18)
CIPCSLIQU, o). 03", . Sie™. i, X) (A19)
Uik = (Uijk + Uijk+1)/2 (A20)
CIPCSL1OU", o), 05", S, S i, X) (A21)
U = (Uijk + Uijk1 + Uijpax + Uij 1ake1) /4 (A22)
ClPCSL1OU”, §),. S5™. p", p™™, i, X). (A23)

(A24)

Step 2: CIPCSL1Qv, f'°R, {3 gotel 8o j y) (A25)
vijk = ijk + vit1jk)/2 (A26)
CIPCSL1O(V, o™, o5®, Siler gie j ) (A27)

viik = (ijk + vijk+1)/2 (A28)
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CIPCSL1OV", o1, oSteR Sler ste’ j ) (A29)
Uitk = (ijk + Vijk+1 + Vigajk + Uisijken) /4 (A30)
CIPCSL1QV”, S, St psterd | pstel@ 1y, (A31)
Step 3: CIPCSL1Q(w, {5, fM1 oSe® 0L 7) (A32)
wij = (Wijk + wit1jk)/2 (A33)
CIPCSL1Ow, 0%, oftt, SE*, S K, 2) (A34)
Wi = (Wijk + wij1+16)/2 (A35)
CIPCSL1Dw", 03", o)t §¥*. §;*. k. 2) (A36)
wil = (Wijk + wij 41k + Wit1jk + Witaj1k) /4 (A37)
CIPCSL1Ow"”, S¥%, St p%%, "k, 2). (A38)
APPENDIX B

Here we summarize the coefficients of the two-dimensional or three-dimensional pro
within a computational cell.

Two-Dimensional Profile
2 2

FIOGY) =) ) Cim(x—x)'(y—yp™ forx <x <% and yj <y <yju.
1=0 m=0

Cwo= AX|: (Zflj + f|+1j) AX }

1 3on.
Co1= Ay[ (2fn+flj+l) A);]]

1 20XI]
Co=— Nz {(f,] + leJ) " ]

1 20;,‘”-
Coz = Ay? {(fiT + fil) - Ay }

4 n n 20 + oxijn1 | L20yi Hoyin 9]
C11= |:( f|+l]+1+2flj) +3 AX +3 Ay AXAy

6 20) + 0yij 41 +o0 g 6"
Co = c fh f ! I+ +3 y|J yi+1j _ ij
21 szAy l: ( + i+1j + |]) Ax Ay AXAy
6 ol +oh 260 +on 6"
Cpp= C 4+ fh £n g 2xij Xij+1 | 5<0yij yitl ;
P axay? { (Co+ fifat ) + Ax Ay AXAY
Co = 9 . ZOXII + GXI]+1 _ - y'J + UYI+1J 4i0ir]]
AxeAy? AX Ay AXAyY

C = (flyja+ iy + i+ 1)),
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Three-Dimensional Profile

2 2 2
V.2 =3_ 3 ) Cimnx—x)'(y = yp™(y — y))"

1=0 m=0 n=0

forx <X <X41,¥i <Y=<VYjr1 and z <z <Zzy;.

Cooo =

Cio0=

Co0 =

Coo1 =

Coo0 =

Co20 =

Cooz2 =

Cuo=

Cio1=

Cou1 =

Cowo=

Cio=

n
ijk
17 30>?ijk
Ax __<2fiTk + ) + Ax }
17 (260 & 17, + Jiik
Ay | ijk Tt Tij+ax Ay
ZE_—(Zﬁﬁ-+fﬁku)*‘—Z§—}
17 20k
o | ik + filai) = =5 ]
1 [/en | ¢n 209k
Z§E_(ﬁW'+fH+m)_'_Z§_
170,,, n 2073ji
N _(fijk + 1) — Az
4 203k + Oxij 41k
AxAy [(ZCXV — flgjew + 2fi?k) + 3T
+320—;/1ijk + oyt 9Pk
Ay AXAY
4 203k + Owijk+1
AxAz [(Zczx — £l + 250 + S—
+32‘7znijk + 071k . 9ok
AZ AXAZ
4 2051k + 041k
AZAY {(ZCyz — il + 210 + — 5
3209ijk +0ogijks1 . 90k
Ay AzZAY
6 203k + Oyij 41k
AX?Ay [_ (Cxy + filigj + fifk) + ZT
+303r/1ijk + ogit1jk _ 601}k
Ay AXAY
6 OYijk T Oxij+1k
7AxAy2 |:_ (ny + firj1+lk + fITk) + 3 Xl AXXI]

+220;ijk +oyiiak  6nl }

Ay AXAY

203
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6 20,jk + Oxijkr1
Cao = AX2AZ [_ (Cox + flhapc + fifk) + 2T
+3azniik +ogak  6ni
Az AXAZ
6 oYk t Oxijks1
Ci02 = AXAZ {_ (Cox+ fificer + k) + 3T
+22“znijk +ozak  6ni
Az AXAZ
6 n n 2051k + 07ij 11k
Coro = AZAY [_ (Cyz+ s + k) + 2
+3U>rf1ijk +oyiiki1 Bk
Ay AzAy
6 Ogijk  Ozij 41k
Coz1 = AZAY? {_ (Cyz+ il + fili) + ST
+226)l/1iik +oyikes  6ni
Ay AzZAY
8 o n n n
Cll]_ = m —<2nyZ+ 6fijk + 2fi+ljk + 2fij+lk + 2fijk+l — fi+1j+lk+1)
32Cax + ZO'Qijk - GQ”HKH + 3ZCay + Zayijk — G;i+1jk+l
AX Ay
+ g2t 202k ~ 9211 n 92$yiik + Shyijkrt . gzq)zijk + Fainaj
Az AXAy AyAz
+9259xijk+ Shijrw |, 27pik
AXAZ AXAYAz
Coroo = L -C _ Zagijk + O-Qij-i—lk o 20-{/]ijk + O';i-%ljk 4pir}k
Ax2Ay2 | Y AX Ay AXAy
Cooz = 9 _C - 20)?ijk + Oxijkrn Zoznijk + o7k | 4Pk
AX2AZ2 | AX Az AXAZ
Coze = 9 _C - Zazn”k + oaij 4k _ ZG;iik + ogijks1 AP0k
AZ2AY? |V Az Ay AzAY
12 N . ] ]
Cuz = AXAYAZ (2Cxyz— filajpa + 25 — filajpapn +2F0k40)
+ SCUX ok + i1 +3C"V +9yiik + 9k _ 22CUZ + 205k — Ozi41j 11k

49 Csy GZS)zijk + Sit1jk _ 62$xijk + Syijrik _ 18pfjy
AXAy AyAZ AXAZ AXAYAZ
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12
Con = AXZAYAZ [(Zcxyz — s F 280 — i +2 fir-]f-ljk)
" QCGZ + 05k + i1k n 3C‘7y + ok + Oyit1jk _ 22C<7x + 203k — Oyij+1k1
- Az Ay AX
Cs,, GZSQyijk + Syijks1 B ezs?xijk + Shij+ik _ 18pfjx
AyAZ AXAy AXAZ AXAYAZ
12 n n n n
Cio1= AXAY?AZ (2Cxyz — s + 2f0 — gy + 210 a)
n o Coy F Oijik T Oxij 41k N 3Coz + ok + gk 22ng + 201 — Oyii1jket
- AX AZ Ay
n Cs, 62$zijk + Saivajk ezss?yijk + Syikra 1800k
AXAZ AyAZ AXAy AXAYAZ

18
Co21 = m {_ (ZCXyz - fir-]rlj+1k+1 - fin+1jk+1 - fi?+1k+1 - fi?k+1)

n n n n
2Cs, = Oyijk+1 — Oxij+1k+1 2Co, — Oyijk+1 — Oyitijk+l n 3C,,

2 2
+ AX + Ay Az
_42$yijk + $yijk+1 _ GCS/Z _ 6Cs, lzpir}k
AXAY AYAzZ AXAz AXAYAz

18
Cizz = m [_ (2CXyz - firjkli-!—lk-&-l - fi:—ljk+1 - fir-]&-lj+1k - firjk—ljk)

n n n n
2C,, — 0zi41jk — Ozit1j+1k n 22Cay — Oyit1jk — Oyit1jk+1 n 3C,,

2
+ Az Ay AX
_42S)zijk+3}zi+ljk _ 6Cs,  6Cs, 12pf}
AYAz AXAY AXAz  AXAYAz

18
Cor2= m {_ (ZCXyz - fi111+1k+1 - fillj-&-lk - fi?+lk+1 - fi?+1k)

n n n n
2C;, — Oyij+1k — Oxij+1k+1 n 22CO'Z = 0Zij4+1k — Ozi+1j+1k n 3Co,

2
+ AX Az Ay
_428?xijk + Skijrk  6Cs,  6Cs, 12pf}y
AXAZ AYAZ  AXAy | AxAyAz
27 C,. .C, .C, 4C 4Cs,
Coo= 52 |Cxyz— Zox X0y _pXory WSy 4 S
AXZAY2AZ Ax Ay “Az T AxAy | AyAz
N 4Cs,, N 8pijx
AXAzZ  AXAYyAz
Cs, = (Syije1 + Styijk)
Cs, = (Szir1jk + Saijn)
Cs, = (Skijrk + Skijk)
Co. = (0 +1k1 + Ot 1k + Oxijkrs T+ UQijk)
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Co, (G i+1jk+1 T G)r/]i+1jk + Usr/]ijk+1 + G;']ijk)
Co, = (o7 Zietj+1k t Ok T Oz + Uzuk)
= (g + fhage + fla + filk)
= (fmgr + filcer + fif o+ filk)
= (fajirs + fhaje + fifkn + filk)
Cuyz= (flajianrs + gy + flimen + s + flhaje + filoac+ fikaa + filk)-
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